Processing math: 21%

2-element Boolean algebra

Name: B2={0,1},,0,,1,

Elements: 0,1

Constant operations

0=0

1=1

Unary operations

Complement = negation = 1x =

x 01
x10

Alternative notation: x=¯x=x=¬x

Binary operations

Join = or = truncated addition = min =

\vee01
001
111

Meet = and = multiplication =

\wedge01
000
101

Derived operations

Symmetric difference: x\oplus y=(x\vee y)\wedge(x\wedge y)' = (x\wedge y')\vee(y\wedge x')

\oplus01
001
110

Implication: x\to y=x'\vee y

\to01
011
101

Bi-implication: x\leftrightarrow y=(x\to y)\wedge(y\to x)

\leftrightarrow01
010
101

Nand: x|y=(x\wedge y)'

|01
011
110

Nor: x\downarrow y=(x\vee y)'

\downarrow01
010
100

Properties

Simple Yes
Subdirectly irreducible Yes

Basic results

This algebra generates the variety of all Boolean algebras.

Every Boolean algebra is a subdirect product of \mathbb B_2.

Maximal subalgebras

none

Minimal superalgebras

4-element Boolean algebra \mathbb B_2^2

Maximal homomorphic images

1-element Boolean algebra \mathbb B_1

Minimal homomorphic preimages

4-element Boolean algebra \mathbb B_2^2

Maximal subvarieties

Minimal supervarieties

???


QR Code
QR Code 2-element_boolean_algebra (generated for current page)