A \emph{dense linear order} is a Chains $\mathbf{D}=\langle D,\le\rangle$ such that
$\le$ is \emph{dense}: $x<y\Longrightarrow\exists z (x<z$, $z<y)$
Remark:
Let $\mathbf{C}$ and $\mathbf{D}$ be dense linear orders. A morphism from $\mathbf{C}$ to $\mathbf{D}$ is a function $h:C\rightarrow D$ that is a orderpreserving:
$x\le y\Longrightarrow h(x)\le h(y)$
Example 1:
$\begin{array}{lr} None \end{array}$