Abbreviation: CLat
A \emph{complete lattice} is a structure $\mathbf{L}=\langle L,\bigvee,\bigwedge\rangle$ such that $\bigvee,\bigwedge$ map subsets of $L$ to elements of $L$ and
$\langle L,\vee,\wedge\rangle$ is a lattice where $x\vee y=\bigvee\{x,y\}$, $x\wedge y=\bigwedge\{x,y\}$ and
$\bigvee S$ is the least upper bound of $S$,
$\bigwedge S$ is the greatest lower bound of $S$.
Let $\mathbf{L}$ and $\mathbf{M}$ be complete lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a complete homomorphism:
$h(\bigvee S)=\bigvee h[S] \mbox{ and } h(\bigwedge S)=\bigwedge h[S]$
Example 1: $\langle \mathcal{P}(X),\bigcup,\bigcap\rangle$, the set of all subsets of a set $X$, with union and intersection of families of sets.
Classtype | Second-order |
---|---|
Amalgamation property | Yes |
Strong amalgamation property | Yes |
Epimorphisms are surjective | Yes |