=====Topological spaces===== Abbreviation: **Top** ====Definition==== A \emph{topological space} is a structure $\mathbf{X}=\langle X,\tau\rangle$, where $\tau=\Omega(\mathbf{X})\subseteq \mathcal P(X)$ is a collection of subsets of $X$ called the \emph{open sets of} $\mathbf{X}$ such that any union of open sets is open: $\mathcal{U}\subseteq\Omega(\mathbf{X})\Longrightarrow\bigcup\mathcal{U}\in\Omega(\mathbf{X})$ any finite intersection of open sets is open: $U,V\in\Omega(\mathbf{X})\Longrightarrow U\cap V\in\Omega(\mathbf{X})$ and $X\in\Omega(\mathbf{X})$ Remark: Note that the union of an empty collection is empty, so $\emptyset\in\Omega(\mathbf{X})$. The set of \emph{closed sets of} $\mathbf{X}$ is $K(\mathbf{X})=\{X-U\mid U\in\Omega(\mathbf{X})\}$. ==Morphisms== Let $\mathbf{X}$ and $\mathbf{Y}$ be topological spaces. A morphism from $\mathbf{X}$ to $\mathbf{Y}$ is a function $f:X\rightarrow Y$ that is \emph{continuous}: $V\in\Omega(\mathbf{Y})\Longrightarrow f^{-1}[V]\in\Omega(\mathbf{X})$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |second-order | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes | ^[[Epimorphisms are surjective]] |yes | Remark: The properties given above use an $(\mathcal{E},\mathcal{M})$ factorization system with $\mathcal{E}=$ surjective morphisms and $\mathcal{M}=$ embeddings. ====Subclasses==== [[T0-spaces]] ====Superclasses==== [[Sets]] ====References====