=====Skew lattices===== Abbreviation: **SkLat** ====Definition==== A \emph{skew lattice} is a structure $\mathbf{A}=\langle A,\vee,\wedge\rangle,$ of type $\langle 2,2\rangle$ such that $\langle A,\vee\rangle$ is a [[band]], $\langle A,\wedge\rangle$ is a [[band]], and the following absorption laws hold: $x\wedge (x\vee y)=x=x\vee (x\wedge y)$, $(x\vee y)\wedge y=y=(x\wedge y)\vee y$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be skew lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \wedge y)=h(x) \wedge h(y)$, ====Examples==== Example 1: ====Basic results==== ====Properties==== Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described. ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] | | ^[[Congruence $n$-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &3\\ f(3)= &7\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$ ====Subclasses==== [[Lattices]] expanded type [[Rectangular_bands]] expanded type ====Superclasses==== [[Semigroups]] reduced type ====References==== [(Leech1989> Leech, J., Skew lattices in rings, Alg. Universalis 26 (1989), 48--72. [(Leech1993> Leech, J., The geometric structure of skew lattices, Trans. Amer. Math. Soc. 35 (1993), 823--842. [(Leech1996> Leech, J., Recent developments in the theory of skew lattices, Semigroup Forum 52 (1996), 7--24. )]\end{document} %