=====Semifields===== Abbreviation: **Sfld** ====Definition==== A \emph{semifield} is a [[semirings with identity|semiring with identity]] $\mathbf{S}=\langle S,+,\cdot, 1\rangle $ such that $\langle S^*,\cdot,1\rangle$ is a group, where $S^*=S-\{0\}$ if $S$ has an absorbtive $0$, and $S=S^*$ otherwise. ==Morphisms== Let $\mathbf{S}$ and $\mathbf{T}$ be semifields. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\to T$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$ ====Examples==== Example 1: ====Basic results==== The only finite semifield that is not a field is the 2-element Boolean semifield: https://arxiv.org/pdf/1709.06923.pdf ====Properties==== ^[[Classtype]] | | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |No | ^[[Residual size]] |Unbounded | ^[[Congruence distributive]] |No | ^[[Congruence modular]] | | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &2\\ f(3)= &1\\ f(4)= &1\\ f(5)= &1\\ f(6)= &0\\ \end{array}$ ====Subclasses==== [[Fields]] ====Superclasses==== [[Semirings with identity]] ====References==== [(Ln19xx> )]