=====Rings===== Abbreviation: **Rng** ====Definition==== A \emph{ring} is a structure $\mathbf{R}=\langle R,+,-,0,\cdot \rangle $ of type $\langle 2,1,0,2\rangle $ such that $\langle R,+,-,0\rangle $ is an [[abelian groups]] $\langle R,\cdot \rangle $ is a [[semigroups]] $\cdot $ distributes over $+$: $x\cdot (y+z)=x\cdot y+x\cdot z$, $(y+z)\cdot x=y\cdot x+z\cdot x$ ==Morphisms== Let $\mathbf{R}$ and $\mathbf{S}$ be rings. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\to S$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$ Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$. ====Examples==== Example 1: $\langle\mathbb{Z},+,-,0,\cdot\rangle$, the ring of integers with addition, subtraction, zero, and multiplication. ====Basic results==== $0$ is a zero for $\cdot$: $0\cdot x=0$ and $x\cdot 0=0$. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &2\\ f(3)= &2\\ f(4)= &11\\ f(5)= &2\\ f(6)= &4\\ \end{array}$ [[Finite rings in the Encyclopedia of Integer Sequences]] ====Subclasses==== [[Commutative rings]] [[Rings with identity]] ====Superclasses==== [[Semirings]] ====References==== [(Ln19xx> )]