=====Residuated lattices===== Abbreviation: **RL** ====Definition==== A \emph{residuated lattice} is a structure $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \backslash, /\rangle$ of type $\langle 2,2,2,0,2,2\rangle$ such that $\langle L, \cdot, e\rangle$ is a [[monoid]] $\langle L, \vee, \wedge\rangle$ is a [[lattice]] $\backslash$ is the left residual of $\cdot$: $y\leq x\backslash z\Longleftrightarrow xy\leq z$ $/$ is the right residual of $\cdot$: $x\leq z/y\Longleftrightarrow xy\leq z$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be residuated lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(e)=e$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable [(OK1985)] [[implementation]] | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |no | ^[[Congruence e-regular]] |yes | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &20\\ f(5)= &149\\ f(6)= &1488\\ f(7)= &18554\\ f(8)= &295292\\ \end{array}$ [[Small residuated lattices]] ====Subclasses==== [[Commutative residuated lattices]] [[Distributive residuated lattices]] [[FL-algebras]] [[Integral residuated lattices]] ====Superclasses==== [[Multiplicative lattices]] [[Residuated join-semilattices]] [[Residuated meet-semilattices]] ====References==== [(OK1985> Hiroakira Ono, Yuichi Komori, \emph{Logics without the contraction rule}, J. Symbolic Logic, \textbf{50}, 1985, 169--201 [[MRreview]][[ZMATH]] )]\end{document} %