=====Representable lattice-ordered groups===== Abbreviation: **RLGrp** ====Definition==== A \emph{representable lattice-ordered group} (or \emph{representable} $\ell$\emph{-group}) is a [[lattice-ordered group]] $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ that satisfies the identity $(x\wedge y)^2 = x^2\wedge y^2$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell$-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\rightarrow M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$ and $f(x\cdot y)=f(x)\cdot f(y)$. Remark: It follows that $f(x\wedge y)=f(x)\wedge f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$ ====Examples==== ====Basic results==== Every representable $\ell$-group is a subdirect product of [[Ordered groups|totally ordered groups]]. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] |hereditarily undecidable [(Gurevic1967)] [(Burris1985)] | ^[[Locally finite]] |no | ^[[Residual size]] | | ^[[Congruence distributive]] |yes (see [[lattices]]) | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ (see [[groups]]) | ^[[Congruence regular]] |yes, (see [[groups]]) | ^[[Congruence uniform]] |yes, (see [[groups]]) | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] |no [(GlassSaracinoWood1984)] | ^[[Strong amalgamation property]] |no [(CherriPowell1993)] | ^[[Epimorphisms are surjective]] | | ====Finite members==== None ====Subclasses==== [[Abelian lattice-ordered groups]] ====Superclasses==== [[Normal valued lattice-ordered groups]] ====References==== [(Burris1985> Stanley Burris, \emph{A simple proof of the hereditary undecidability of the theory of lattice-ordered abelian groups}, Algebra Universalis, \textbf{20}, 1985, 400--401, http://www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/PAPERS/HerUndecLOAG.pdf)] [(CherriPowell1993> Mona Cherri and Wayne B. Powell, \emph{Strong amalgamation of lattice ordered groups and modules}, International J. Math. & Math. Sci., Vol 16, No 1 (1993) 75--80, http://www.hindawi.com/journals/ijmms/1993/405126/abs/ doi:10.1155/S0161171293000080)] [(GlassSaracinoWood1984> A. M. W. Glass, D. Saracino and C. Wood, \emph{Non-amalgamation of ordered groups}, Math. Proc. Camb. Phil. Soc. 95 (1984), 191--195)] [(Gurevic1967> Yuri Gurevic, \emph{Hereditary undecidability of a class of lattice-ordered Abelian groups}, Algebra i Logika Sem., \textbf{6}, 1967, 45--62)]