=====Relation algebras===== Abbreviation: **RA** ====Definition==== A \emph{relation algebra} is a structure $\mathbf{A}=\langle A,\vee,0,\wedge,1,\neg,\circ,^{\smile},e\rangle$ such that $\langle A,\vee,0,\wedge,1,\neg\rangle$ is a [[Boolean algebra]] $\langle A,\circ,e\rangle $ is a [[monoid]] $\circ$ is \emph{join-preserving}: $(x\vee y)\circ z=(x\circ z)\vee (y\circ z)$ $^{\smile}$ is an \emph{involution}: $x^{\smile\smile}=x$, $(x\circ y)^{\smile}=y^{\smile}\circ x^{\smile}$ $^{\smile}$ is \emph{join-preserving}: $(x\vee y)^{\smile}=x^{\smile}\vee y^{\smile}$ $\circ$ is residuated: $x^{\smile}\circ(\neg (x\circ y))\le\neg y$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be relation algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a Boolean homomorphism and preserves $\circ$, $^{\smile}$, $e$: $h(x\circ y)=h(x)\circ h(y)$, $h(x^{\smile})=h(x)^{\smile}$, $h(e)=e$ ====Examples==== Example 1: $\langle \mathcal P(U^2), \cup, \emptyset, \cap, U^2, -, \circ, ^\smile, id_U \rangle$ the full relation algebra of binary relations on a set $U$. Example 2: $\langle \mathcal P(G), \cup, \emptyset, \cap, G, -, \circ, ^\smile, \{e\} \rangle$ the group relation algebra of a [[group]] $\langle G, *, ^{-1}, e \rangle$, where $X\circ Y=\{x*y : x\in X, y\in Y\}$ and $X^\smile=\{x^{-1} : x\in X\}$. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |undecidable | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |yes | ^[[Equationally def. pr. cong.]] |yes | ^[[Discriminator variety]] |yes | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] |no | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &3\\ f(5)= &0\\ f(6)= &0\\ \end{array}$ [[http://www.chapman.edu/~jipsen/gap/ramaddux.html|Small relation algebras]] ====Subclasses==== [[n-dimensional relation algebras]] [[Representable relation algebras]] [[Commutative relation algebras]] [[Square-increasing relation algebras]] ====Superclasses==== [[Sequential algebras]] [[Semiassociative relation algebras]] ====References==== /*[(Ln19xx> )]*/