=====MV-algebras===== Abbreviation: **MV** ====Definition==== An \emph{MV-algebra} (short for \emph{multivalued logic algebra}) is a structure $\mathbf{A}=\langle A, +, 0, \neg\rangle$ such that $\langle A, +, 0\rangle$ is a [[commutative monoid]] $\neg \neg x=x$ $x + \neg 0 = \neg 0$ $\neg(\neg x+y)+y = \neg(\neg y+x)+x$ Remark: This is the definition from [(COM2000)] ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be MV-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(\neg x)=\neg h(x)$, $h(0)=0$ ====Definition==== An \emph{MV-algebra} is a structure $\mathbf{A}=\langle A, +, 0, \cdot, 1, \neg\rangle$ such that $\langle A, \cdot, 1\rangle$ is a [[commutative monoid]] $\neg $ is a DeMorgan involution for $+,\cdot $: $\neg \neg x=x$, $x+y=\neg ( \neg x\cdot \neg y)$ $\neg 0=1$, $0\cdot x=0$, $\neg ( \neg x+y) +y=\neg ( \neg y+x) +x$ ====Definition==== An \emph{MV-algebra} is a [[basic logic algebra]] $\mathbf{A}=\langle A,\vee,0,\wedge,1,\cdot,\to\rangle$ that satisfies MV: $x\vee y=(x\to y)\to y$ ====Definition==== A \emph{Wajsberg algebra} is an algebra $\mathbf{A}=\langle A, \to, \neg, 1\rangle$ such that $1\to x=x$ $(x\to y)\to((y\to z)\to(x\to z) = 1$ $(x\to y)\to y = (y\to x)\to x$ $(\neg x\to\neg y)\to(y\to x)=1$ Remark: Wajsberg algebras are term-equivalent to MV-algebras via $x\to y=\neg x+y$, $1=\neg 0$ and $x + y=\neg x\to y$, $0=\neg 1$. ====Definition==== A \emph{bounded Wajsberg hoop} is an algebra $\mathbf{A}=\langle A, \cdot, \to, 0, 1\rangle$ such that $\langle A, \cdot, \to, 1\rangle$ is a [[hoop]] $(x\to y)\to y = (y\to x)\to x$ $0\to x=1$ Remark: Bounded Wajsberg hoops are term-equivalent to Wajsberg algebras via $x\cdot y=\neg(x\to\neg y)$, $0=\neg 1$, and $\neg x=x\to 0$. See [(BP1994)] for details. ====Definition==== A \emph{lattice implication algebra} is an algebra $\mathbf{A}=\langle A, \to, -, 1\rangle$ such that $x\to (y\to z) = y\to (x\to z)$ $1\to x = x$ $x\to 1 = 1$ $x\to y = {-}y\to {-}x$ $(x\to y)\to y = (y\to x)\to x$ Remark: Lattice implication algebras are term-equivalent to MV-algebras via $x + y = -x\to y$, $0 = -1$, and $\neg x= - x$. ====Definition==== A \emph{bounded commutative BCK-algebra} is an algebra $\mathbf{A}=\langle A,\cdot, 0, 1\rangle$ such that $\langle A,\cdot,0\rangle$ is a [[commutative BCK-algebra]] and $x\cdot 1 = 0$ Remark: Bounded commutative BCK-algebras are term-equivalent to MV-algebras via $\neg x=1\cdot x$, $x + y = y\cdot \neg x$, and switching the role of $0$, $1$. ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Universal theory]] |decidable (FEP[(BF2000)])| ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence e-regular]] |yes, $e=1$ | ^[[Congruence uniform]] | | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |yes [(Mu1987)] | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== ^$n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ^# of algs | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 4 | 1 | 2 | 2 | 5 | 1 | 4 | 1 | 4 | 2 | 2 | 1 | 7 | 2 | ^# of si's | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | The number of algebras with $n$ elements is given by the number of ways of factoring $n$ into a product with nontrivial factors, see http://oeis.org/A001055 ====Subclasses==== [[Boolean algebras]] ====Superclasses==== [[Generalized MV-algebras]] [[Basic logic algebras]] [[Wajsberg hoops]] ====References==== [(BF2000> W. J. Blok, I. M. A. Ferreirim, \emph{On the structure of hoops}, Algebra Universalis, \textbf{43} 2000, 233--257)] [(BP1994> W. J. Blok, D. Pigozzi, \emph{On the structure of varieties with equationally definable principal congruences. III}, Algebra Universalis, \textbf{32} 1994, 545--608)] [(COM2000> Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici, \emph{Algebraic foundations of many-valued reasoning}, Trends in Logic---Studia Logica Library \textbf{7} Kluwer Academic Publishers 2000, x+231)] [(Mu1987> Daniele Mundici, \emph{Bounded commutative BCK-algebras have the amalgamation property}, Math. Japon., \textbf{32} 1987, 279--282)]