=====Modules over a ring===== Abbreviation: **RMod** ====Definition==== A \emph{module over a [[rings with identity]]} $\mathbf{R}$ is a structure $\mathbf{A}=\langle A,+,-,0,f_r\ (r\in R)\rangle$ such that $\langle A,+,-,0\rangle $ is an [[abelian groups]] $f_r$ preserves addition: $f_r(x+y)=f_r(x)+f_r(y)$ $f_{1}$ is the identity map: $f_{1}(x)=x$ $f_{r+s}(x))=f_r(x)+f_s(x)$ $f_{r\circ s}(x)=f_r(f_s(x))$ Remark: $f_r$ is called \emph{scalar multiplication by $r$}, and $f_r(x)$ is usually written simply as $rx$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be modules over a ring $\mathbf{R}$. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a group homomorphism and preserves all $f_r$: $h(f_r(x))=f_r(h(x))$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ ====Subclasses==== ====Superclasses==== [[Abelian groups]] ====References==== [(Ln19xx> )]