=====Modular lattices===== Abbreviation: **MLat** ====Definition==== A \emph{modular lattice} is a [[lattice]] $\mathbf{L}=\langle L, \vee, \wedge\rangle$ that satisfies the \emph{modular identity}: $((x\wedge z) \vee y) \wedge z = (x\wedge z) \vee (y\wedge z)$ ====Definition==== A \emph{modular lattice} is a [[lattice]] $\mathbf{L}=\langle L, \vee, \wedge\rangle$ that satisfies the \emph{modular law}: $x\le z\Longrightarrow (x\vee y) \wedge z\le x\vee (y\wedge z)$ ====Definition==== A \emph{modular lattice} is a lattice $\mathbf{L}=\langle L,\vee,\wedge\rangle $ such that $\mathbf{L}$ has no sublattice isomorphic to the pentagon $\mathbf{N}_{5}$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Examples==== Example 1: $M_3$ is the smallest nondistributive modular lattice. By a result of [(Dedekind1900)] this lattice occurs as a sublattice of every nondistributive modular lattice. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |undecidable [(Freese1980)] [(Herrmann1983)] | ^[[Quasiequational theory]] |undecidable [(Lipshitz1974)] | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] |no | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &4\\ f(6)= &8\\ f(7)= &16\\ f(8)= &34\\ f(9)= &72\\ f(10)= &157\\ f(11)= &343\\ f(12)= &766\\ f(13)= &1718\\ f(14)= &3899\\ f(15)= &8898\\ f(16)= &20475\\ f(17)= &47321\\ f(18)= &110024\\ f(19)= &256791\\ f(20)= &601991\\ f(21)= &1415768\\ f(22)= &3340847\\ f(23)= &7904700\\ f(24)= &18752942\\ f(25)= &\\ f(26)= &\\ \end{array}$[(Peter Jipsen, Nathan Lawless, \emph{Generating all finite modular lattices of a given size}, Algebra Universalis, \textbf{74}, 2015, 253--264)] ====Subclasses==== [[Distributive lattices]] [[Complete modular lattices]] ====Superclasses==== [[Semimodular lattices]] [[Geometric lattices]] ====References==== [(Dedekind1900> Richard Dedekind, \emph{\"Uber die von drei Moduln erzeugte Dualgruppe}, Math. Ann., \textbf{53}, 1900, 371--403)] [(Freese1980> Ralph Freese, \emph{Free modular lattices}, Trans. Amer. Math. Soc., \textbf{261}, 1980, 81--91)] [(Herrmann1983> Christian Herrmann, \emph{On the word problem for the modular lattice with four free generators}, Math. Ann., \textbf{265}, 1983, 513--527)] [(Lipshitz1974> L. Lipshitz, \emph{The undecidability of the word problems for projective geometries and modular lattices}, Trans. Amer. Math. Soc., \textbf{193}, 1974, 171--180)]