=====Medial groupoids===== ====Definition==== A \emph{medial groupoid} is a structure $\mathbf{G}=\langle G,\cdot\rangle$, where $\cdot $ is an infix binary operation such that $\cdot$ mediates: $(x\cdot y)\cdot(z\cdot w)=(x\cdot z)\cdot (y\cdot w)$ ==Morphisms== Let $\mathbf{G}$ and $\mathbf{H}$ be medial groupoids. A morphism from $\mathbf{G}$ to $\mathbf{H}$ is a function $h:G\rightarrow H$ that is a homomorphism: $h(xy)=h(x)h(y)$ Jaroslav Jezek, Tomas Kepka,\emph{Equational theories of medial groupoids}, Algebra Universalis, \textbf{17}1983,174--190[[MRreview]] Jaroslav Jezek, Tomas Kepka,\emph{Medial groupoids}, Rozpravy Ceskoslovenske Akad. Ved Rada Mat. Prirod. Ved, \textbf{93}1983,93[[MRreview]] ====Examples==== Example 1: $\langle S,*\rangle$, where $\langle S,+,\cdot\rangle$ is any commutative semiring, $a,b\in S$, and $x*y=a\cdot x+b\cdot y$. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |no | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ ====Subclasses==== [[Medial semigroups]] [[Commutative medial groupoids]] ====Superclasses==== [[Groupoids]] ====References==== [(Ln19xx> )]