=====Left cancellative semigroups===== Abbreviation: **CanSgrp** ====Definition==== A \emph{left cancellative semigroup} is a semigroup $\mathbf{S}=\langle S,\cdot \rangle $ such that $\cdot $ is left cancellative: $z\cdot x=z\cdot y\Longrightarrow x=y$ ==Morphisms== Let $\mathbf{S}$ and $\mathbf{T}$ be left cancellative semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism: $h(xy)=h(x)h(y)$ ====Examples==== Example 1: $\langle \mathbb{N},+\rangle $, the natural numbers, with additition. ====Basic results==== ====Properties==== ^[[Classtype]] |Quasivariety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |No | ^[[Residual size]] | | ^[[Congruence distributive]] |No | ^[[Congruence modular]] |No | ^[[Congruence n-permutable]] |No | ^[[Congruence regular]] |No | ^[[Congruence uniform]] |No | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |No | ^[[Amalgamation property]] |No | ^[[Strong amalgamation property]] |No | ^[[Epimorphisms are surjective]] |No | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ ====Subclasses==== [[Left cancellative monoids]] [[Cancellative semigroups]] ====Superclasses==== [[Semigroups]] ====References==== [(Ln19xx> )]