=====Lattices===== Abbreviation: **Lat** ====Definition==== A \emph{lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge \rangle $, where $\vee $ and $\wedge $ are infix binary operations called the \emph{join} and \emph{meet}, such that $\vee ,\wedge $ are associative: $(x\vee y)\vee z=x\vee (y\vee z)$, $(x\wedge y)\wedge z=x\wedge (y\wedge z)$ $\vee ,\wedge $ are commutative: $x\vee y=y\vee x$, $x\wedge y=y\wedge x$ $\vee ,\wedge $ are absorbtive: $(x\vee y)\wedge x=x$, $(x\wedge y)\vee x=x$. Remark: It follows that $\vee $ and $\wedge $ are idempotent: $x\vee x=x$, $x\wedge x=x$. This definition shows that lattices form a variety. A partial order $\leq $ is definable in any lattice by $x\leq y\Longleftrightarrow x\wedge y=x$, or equivalently by $x\leq y\Longleftrightarrow x\vee y=y$. ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Definition==== A \emph{lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge \rangle $ of type $\langle 2,2\rangle $ such that $\langle L,\vee \rangle $ and $\langle L,\wedge \rangle $ are [[semilattices]], and $\vee ,\wedge $ are absorbtive: $(x\vee y)\wedge x=x$, $(x\wedge y)\vee x=x$ ====Definition==== A \emph{lattice} is a structure $\mathbf{L}=\langle L,\leq \rangle $ that is a [[partially ordered set]] in which all elements $x,y\in L$ have a least upper bound: $z=x\vee y\Longleftrightarrow x\leq z$, $y\leq z\ \mbox{and}\ \forall w\ (x\leq w$, $y\leq w\Longrightarrow z\leq w)$ and a greatest lower bound: $z=x\wedge y\Longleftrightarrow z\leq x$, $z\leq y\ \mbox{and}\ \forall w\ (w\leq x$, $w\leq y\Longrightarrow w\leq z)$ ====Definition==== A \emph{lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge ,\leq \rangle $ such that $\langle L,\leq \rangle $ is a [[partially ordered set]] and the following quasiequations hold: $\vee $-left: $x\leq z$ and $y\leq z\ \Longrightarrow x\vee y\leq z$ $\vee $-right: $z\leq x\Longrightarrow z\leq x\vee y$, $\quad z\leq y\Longrightarrow z\leq x\vee y$ $\wedge $-right: $z\leq x$ and $z\leq y\Longrightarrow z\leq x\wedge y$ $\wedge $-left: $x\leq z\Longrightarrow x\wedge y\leq z$, $\quad y\leq z\Longrightarrow x\wedge y\leq z$ Remark: These quasiequations give a cut-free Gentzen system to decide the equational theory of lattices. ====Examples==== Example 1: $\langle P(S),\cup ,\cap ,\subseteq \rangle $, the collection of subsets of a sets $S$, ordered by inclusion. /*[[Lattices (mace)]]*/ ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable in polynomial time | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes [(Nenosuke Funayama,Tadasi Nakayama,\emph{On the distributivity of a lattice of lattice-congruences}, Proc. Imp. Acad. Tokyo, \textbf{18} 1942, 553--554)] | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes [(Bjarni J\'onsson,\emph{Universal relational systems}, Math. Scand., \textbf{4} 1956, 193--208)] | ^[[Epimorphisms are surjective]] |yes | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &5\\ f(6)= &15\\ f(7)= &53\\ f(8)= &222\\ f(9)= &1078\\ f(10)= &5994\\ f(11)= &37622\\ f(12)= &262776\\ f(13)= &2018305\\ f(14)= &16873364\\ f(15)= &152233518\\ f(16)= &1471613387\\ f(17)= &15150569446\\ f(18)= &165269824761\\ f(19)= &1901910625578 \end{array}$[(Jobst Heitzig, J\"urgen Reinhold, \emph{Counting finite lattices}, Algebra Universalis, \textbf{48}, 2002, 43--53)][(Peter Jipsen, Nathan Lawless, \emph{Generating all finite modular lattices of a given size}, Algebra Universalis, \textbf{74}, 2015, 253--264)] [[http://math.chapman.edu/~jipsen/posets/lattices77.html|Diagrams of lattices of size 2 to 7]] /*[[Finite lattices]] of size $\le 7$ [[Subdirectly irreducible lattices]] of size $\le 7$ [[Lattices not in some subclasses]] of size $\le 7$ */ ====Subclasses==== [[Modular lattices]] [[Semidistributive lattices]] [[Neardistributive lattices]] [[Join-complete lattices]] [[Meet-complete lattices]] ====Superclasses==== [[Semilattices]] [[Weakly associative lattices]] ====References====