=====Lattice-ordered rings===== Abbreviation: **LRng** ====Definition==== A \emph{lattice-ordered ring} (or $\ell$\emph{-ring}) is a structure $\mathbf{L}=\langle L,\vee,\wedge,+,-,0,\cdot\rangle$ such that $\langle L,\vee,\wedge\rangle$ is a [[lattice]] $\langle L,+,-,0,\cdot\rangle $ is a [[ring]] $+$ is order-preserving: $x\leq y\Longrightarrow x+z\leq y+z$ ${\uparrow}0$ is closed under $\cdot$: $0\leq x,y\Longrightarrow 0\leq x\cdot y$ Remark: ====Definition==== ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell $-rings. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\rightarrow M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$, $f(x\wedge y)=f(x)\wedge f(y)$, $f(x\cdot y)=f(x)\cdot f(y)$, $f(x+y)=f(x)+f(y)$. ====Examples==== ====Basic results==== The lattice reducts of lattice-ordered rings are [[distributive lattices]]. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Congruence distributive]] |yes, see [[lattices]] | ^[[Congruence extension property]] | | ^[[Congruence n-permutable]] |yes, $n=2$, see [[groups]] | ^[[Congruence regular]] |yes, see [[groups]] | ^[[Congruence uniform]] |yes, see [[groups]] | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} None \end{array}$ ====Subclasses==== [[Commutative lattice-ordered rings]] ====Superclasses==== [[Abelian lattice-ordered groups]] ====References==== [(Ln19xx> )]