=====Lattice-ordered groups===== Abbreviation: **LGrp** ====Definition==== A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a structure $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ such that $\langle L, \vee, \wedge\rangle$ is a [[lattice]] $\langle L, \cdot, ^{-1}, e\rangle$ is a [[group]] $\cdot$ is order-preserving: $x\leq y\Longrightarrow uxv\leq uyv$ Remark: $xy=x\cdot y$, $x\leq y\Longleftrightarrow x\wedge y=x$ and $x\leq y\Longleftrightarrow x\vee y=y$ ====Definition==== A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a structure $\mathbf{L}=\langle L,\vee ,\cdot ,^{-1},e\rangle $ such that $\langle L,\vee\rangle $ is a [[semilattice]] $\langle L,\cdot,^{-1},e\rangle $ is a [[group]] $\cdot$ is join-preserving: $u(x\vee y)v=uxv\vee uyv$ Remark: $x\wedge y=( x^{-1}\vee y^{-1}) ^{-1}$ ====Definition==== A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a residuated lattice $\mathbf{L}=\langle L,\vee ,\wedge ,\cdot ,\backslash ,/,e\rangle $ that satisfies the identity $x(e/x)=e$. Remark: $x^{-1}=e/x=x\backslash e$, $x/y=xy^{-1}$ and $x\backslash y=x^{-1}y$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell $-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\to M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$, $f(x\wedge y)=f(x)\wedge f(y)$, $f(x\cdot y)=f(x)\cdot f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$. ====Examples==== $\langle Aut(\mathbf{C}),\mbox{max},\mbox{min},\circ,^{-1},id_{\mathbf{C}}\rangle$, the group of order-automorphisms of a [[Chains]] $\mathbf{C}$, with $\mbox{max}$ and $\mbox{min}$ (applied pointwise), composition, inverse, and identity automorphism. ====Basic results==== The lattice reducts of lattice-ordered groups are [[distributive lattices]]. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable[(HollandMcCleary1979)] | ^[[Quasiequational theory]] |undecidable[(GlassGurevich1983)] | ^[[First-order theory]] |hereditarily undecidable[(Gurevic1967)] [(Burris1985)] | ^[[Congruence distributive]] |yes, see [[lattices]] | ^[[Congruence extension property]] | | ^[[Congruence n-permutable]] |yes, $n=2$, see [[groups]] | ^[[Congruence regular]] |yes, see [[groups]] | ^[[Congruence uniform]] |yes, see [[groups]] | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] | | ====Finite nontrivial members==== None ====Subclasses==== [[Normal valued lattice-ordered groups]] ====Superclasses==== [[Cancellative residuated lattices]] ====References==== [(Burris1985> Stanley Burris, \emph{A simple proof of the hereditary undecidability of the theory of lattice-ordered abelian groups}, Algebra Universalis, \textbf{20}, 1985, 400--401, http://www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/PAPERS/HerUndecLOAG.pdf)] [(GlassGurevich1983> A. M. W. Glass, Yuri Gurevich, \emph{The word problem for lattice-ordered groups}, Trans. Amer. Math. Soc., \textbf{280} 1983, 127--138 [[http://www.ams.org/mathscinet-getitem?mr=85d:06015|MRreview]][[http://www.emis.de/MATH-item?0586.03037|ZMATH]])] [(Gurevic1967> Yuri Gurevic, \emph{Hereditary undecidability of a class of lattice-ordered Abelian groups}, Algebra i Logika Sem., \textbf{6}, 1967, 45--62)] [(HollandMcCleary1979> W. Charles Holland, Stephen H. McCleary, \emph{Solvability of the word problem in free lattice-ordered groups}, Houston J. Math., \textbf{5} 1979, 99--105 [[http://www.ams.org/mathscinet-getitem?mr=80f:06018|MRreview]][[http://www.emis.de/MATH-item?0404.06009|ZMATH]] [http://www.chapman.edu/~jipsen/lgroups/lgroupDecisionProc.html implementation])] [(Pierce1972> Keith R. Pierce, \emph{Amalgamations of lattice ordered groups}, Trans. Amer. Math. Soc., \textbf{172} 1972, 249--260 [[http://www.ams.org/mathscinet-getitem?mr=48 :3835|MRreview]][[http://www.emis.de/MATH-item?0259.06017|ZMATH]])]