=====Involutive residuated lattices===== Abbreviation: **InRL** ====Definition==== An \emph{involutive residuated lattice} is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \sim, -\rangle$ of type $\langle 2, 2, 2, 0, 1, 1\rangle$ such that $\langle A, \vee, \wedge, \neg\rangle$ is an [[involutive lattice]] $\langle A, \cdot, 1\rangle$ is a [[monoid]] $xy\le z\iff x\le \neg(y(\neg z))\iff y\le \neg((\neg z)x)$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be involutive residuated lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h({\sim}x)={\sim}h(x)$ and $h(1)=1$. ====Definition==== An \emph{...} is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that $...$ is ...: $axiom$ $...$ is ...: $axiom$ ====Examples==== Example 1: ====Basic results==== ====Properties==== Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described. ^[[Classtype]] |(value, see description) [(Ln19xx)] | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] | | ^[[Congruence $n$-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$ ====Subclasses==== [[...]] subvariety [[...]] expansion ====Superclasses==== [[...]] supervariety [[...]] subreduct ====References==== [(Ln19xx> F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 [[MRreview]] )]