=====Implicative lattices===== Abbreviation: **ImpLat** ====Definition==== An \emph{implicative lattice} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\to\rangle$ such that $\langle A,\vee,\wedge\rangle$ is a [[distributive lattices]] $\to$ is an implication: $x\to(y\vee z) = (x\to y)\vee(x\to z)$ $x\to(y\wedge z) = (x\to y)\wedge(x\to z)$ $(x\vee y)\to z = (x\to z)\wedge(y\to z)$ $(x\wedge y)\to z = (x\to z)\vee(y\to z)$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be involutive lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\vee y)=h(x)\wedge h(y)$, $h(x\to y)=h(x)\to h(y)$ Nestor G. Martinez,H. A. Priestley,\emph{On Priestley spaces of lattice-ordered algebraic structures}, Order, \textbf{15}1998,297--323[[http://www.ams.org/mathscinet-getitem?mr=2001b:06013|MRreview]] Nestor G. Martinez,\emph{A simplified duality for implicative lattices and $l$-groups}, Studia Logica, \textbf{56}1996,185--204[[http://www.ams.org/mathscinet-getitem?mr=97g:06014|MRreview]] ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$ ====Subclasses==== [[Goedel algebras]] [[MV-algebras]] [[Lattice-ordered groups]] ====Superclasses==== [[Distributive lattices]] ====References==== [(Ln19xx> )]