=====Hoops===== ====Definition==== A \emph{hoop} is a structure $\mathbf{A}=\langle A,\cdot,\rightarrow,1\rangle $ of type $\langle 2,2,0\rangle$ such that $\langle A,\cdot ,1\rangle $ is a [[commutative monoid]] $x\rightarrow ( y\rightarrow z) = (x\cdot y)\rightarrow z$ $x\rightarrow x=1$ $(x\rightarrow y)\cdot x = (y\rightarrow x)\cdot y$ Remark: This definition shows that hoops form a variety. Hoops are partially ordered by the relation $x\leq y \iff x\rightarrow y=1$. The operation $x\wedge y = (x\rightarrow y)\cdot x$ is a meet with respect to this order. ====Definition==== A \emph{hoop} is a structure $\mathbf{A}=\langle A,\cdot,\rightarrow,1\rangle $ of type $\langle 2,2,0\rangle$ such that $x\cdot y = y\cdot x$ $x\cdot 1 = x$ $x\rightarrow ( y\rightarrow z) = (x\cdot y)\rightarrow z$ $x\rightarrow x=1$ $(x\rightarrow y)\cdot x = (y\rightarrow x)\cdot y$ ====Definition==== A \emph{hoop} is a structure $\mathbf{A}=\langle A,\cdot,\rightarrow,1\rangle $ of type $\langle 2,2,0\rangle$ such that $\langle A,\cdot ,1\rangle $ is a [[commutative monoid]] and if $x\le y$ is defined by $x\rightarrow y = 1$ then $\le$ is a partial order, $\rightarrow$ is the residual of $\cdot$, i.e., $\ x\cdot y\le z \iff y\le x\rightarrow z$, and $(x\rightarrow y)\cdot x = (y\rightarrow x)\cdot y$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be hoops. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y) $, $h(1)=1$ ====Examples==== Example 1: ====Basic results==== Finite hoops are the same as [[generalized BL-algebras]] (= divisible residuated lattices) since the join always exists in a finite meet-semilattice with top, and since all finite GBL-algebras are commutative and integral. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &5\\ f(5)= &10\\ f(6)= &23\\ f(7)= &49\\ \end{array}$ ====Subclasses==== [[Wajsberg hoops]] [[Idempotent hoops]] [[Commutative generalized BL-algebras]] ====Superclasses==== [[Pocrims]] [[Generalized hoops]] ====References==== [(Ln19xx> )]