=====Distributive lattices===== Abbreviation: **DLat** ====Definition==== A \emph{distributive lattice} is a lattice $\mathbf{L}=\langle L,\vee ,\wedge\rangle $ such that $\wedge $ distributes over $\vee $: $x\wedge (y\vee z) = (x\wedge y) \vee (x\wedge z)$ ====Definition==== A \emph{distributive lattice} is a lattice $\mathbf{L}=\langle L,\vee ,\wedge\rangle $ such that $\vee $ distributes over $\wedge $: $x\vee (y\wedge z) = (x\vee y) \wedge (x\vee z)$ ====Definition==== A \emph{distributive lattice} is a lattice $\mathbf{L}=\langle L,\vee ,\wedge \rangle $ such that $(x\wedge y) \vee (x\wedge z) \vee (y\wedge z) = (x\vee y) \wedge (x\vee z) \wedge (y\vee z)$ ====Definition==== A \emph{distributive lattice} is a lattice $\mathbf{L}=\langle L,\vee ,\wedge \rangle $ such that $\mathbf{L}$ has no sublattice isomorphic to the diamond $\mathbf{M}_{3}$ or the pentagon $\mathbf{N}_{5}$ ====Definition==== A \emph{distributive lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge \rangle $ of type $\langle 2,2\rangle $ such that $x\wedge(x\vee y)=x$ and $x\wedge(y\vee z)=(z\wedge x)\vee(y\wedge x)$.[(Sholander1951)] ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Examples==== Example 1: $\langle P(S),\cup ,\cap ,\subseteq \rangle $, the collection of subsets of a sets $S$, ordered by inclusion. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |undecidable | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | Equationally def. pr. cong. & yes, $\begin{array}{c}\langle c,d\rangle\in \text{Cg}(a,b)\iff \\ (a\wedge b)\wedge c=(a\wedge b)\wedge d\\ (a\vee b)\vee c=(a\vee b)\vee d\end{array}$\\\hline ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] |no | ^[[Locally finite]] |yes | ^[[Residual size]] |2 | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$ Values known up to size 49 [(ErneHeitigReinhold2002)] ====Subclasses==== [[One-element algebras]] [[Bounded distributive lattices]] [[Complete distributive lattices]] ====Superclasses==== [[Modular lattices]] [[Semidistributive lattices]] ====References==== [(ErneHeitigReinhold2002> M. Ern\'e, J. Heitzig, J. Reinhold, \emph{On the number of distributive lattices}, Electronic J. Combinatorics 9 (2002), no. 1, Research Paper 24, 23 pp. )] [(Sholander1951> M. Sholander, \emph{Postulates for distributive lattices}. Canadian J. Math. 3, (1951). 28–30. )]