=====Distributive lattice-ordered semigroups===== Abbreviation: **DLOS** ====Definition==== A \emph{distributive lattice ordered semigroup} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\cdot\rangle$ of type $\langle 2,2,2\rangle$ such that $\langle A,\vee,\wedge\rangle$ is a [[distributive lattice]] $\langle A,\cdot\rangle$ is a [[semigroup]] $\cdot$ distributes over $\vee$: $x\cdot(y\vee z)=(x\cdot y)\vee (x\cdot z)$ and $(x\vee y)\cdot z=(x\cdot z)\vee (y\cdot z)$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be distributive lattice-ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x) \vee h(y)$, $h(x\wedge y)=h(x) \wedge h(y)$, $h(x\cdot y)=h(x) \cdot h(y)$ ====Examples==== Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition. H. Andreka[(Andreka1991)] proves that these examples generate the variety DLOS. ====Basic results==== ====Properties==== Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described. ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence $n$-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &6\\ f(3)= &44\\ f(4)= &479\\ f(5)= &\\ \end{array}$ ====Subclasses==== [[Distributive lattice-ordered monoids]] [[Commutative distributive lattice-ordered semigroups]] ====Superclasses==== [[Lattice-ordered semigroups]] ====References==== [(Andreka1991>Hajnal Andreka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25)]