=====Conjugative binars===== Abbreviation: **ConBin** ====Definition==== A \emph{conjugative binar} is a [[binar]] $\mathbf{A}=\langle A,\cdot\rangle$ such that $\cdot$ is conjugative: $\exists w, \ x\cdot w=y \iff \exists w, \ w\cdot x=y$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be commutative binars. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y)$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] | first-order | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | no | ^[[Residual size]] | | ^[[Congruence distributive]] | no | ^[[Congruence modular]] | no | ^[[Congruence n-permutable]] | no | ^[[Congruence regular]] | no | ^[[Congruence uniform]] | no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== ^n ^ # of algebras^ |1 | 1| |2 | 4| |3 | 215| ====Subclasses==== [[Commutative binars]] [[Conjugative semigroups]] ====Superclasses==== [[Binars]] ====References====