=====Commutative rings with identity===== Abbreviation: **CRng$_1$** ====Definition==== A \emph{commutative ring with identity} is a [[rings with identity]] $\mathbf{R}=\langle R,+,-,0,\cdot,1 \rangle$ such that $\cdot$ is commutative: $x\cdot y=y\cdot x$ ==Morphisms== Let $\mathbf{R}$ and $\mathbf{S}$ be commutative rings with identity. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$ Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$. ====Examples==== Example 1: $\langle\mathbb{Z},+,-,0,\cdot,1\rangle$, the ring of integers with addition, subtraction, zero, multiplication, and one. ====Basic results==== $0$ is a zero for $\cdot$: $0\cdot x=x$ and $x\cdot 0=0$. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &4\\ f(5)= &1\\ f(6)= &1\\ \end{array}$ ====Subclasses==== [[Boolean algebras]] [[Integral domains]] ====Superclasses==== [[Commutative rings]] [[Rings with identity]] ====References==== [(Ln19xx> )]