=====Commutative BCK-algebras===== Abbreviation: **ComBCK** ====Definition==== A \emph{commutative BCK-algebra} is a structure $\mathbf{A}=\langle A,\cdot ,0\rangle$ of type $\langle 2,0\rangle$ such that (1): $((x\cdot y)\cdot (x\cdot z))\cdot (z\cdot y) = 0$ (2): $x\cdot 0 = x$ (3): $0\cdot x = 0$ (4): $x\cdot y=y\cdot x= 0 \Longrightarrow x=y$ (5): $x\cdot (x\cdot y) = y\cdot (y\cdot x)$ Remark: Note that the commutativity does not refer to the operation $\cdot$, but rather to the term operation $x\wedge y=x\cdot (x\cdot y)$, which turns out to be a meet with respect to the following partial order: $x\le y \iff x\cdot y=0$, with $0$ as least element. ====Definition==== A \emph{commutative BCK-algebra} is a [[BCK-algebra]] $\mathbf{A}=\langle A,\cdot ,0\rangle$ such that $x\cdot (x\cdot y) = y\cdot (y\cdot x)$ ====Definition==== A \emph{commutative BCK-algebra} is a structure $\mathbf{A}=\langle A,\cdot ,0\rangle$ of type $\langle 2,0\rangle$ such that (1): $(x\cdot y)\cdot z = (x\cdot z)\cdot y$ (2): $x\cdot (x\cdot y) = y\cdot (y\cdot x)$ (3): $x\cdot x = 0$ (4): $x\cdot 0 = x$ This definition shows that commutative BCK algebras form a variety. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be commutative BCK-algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y) \mbox{ and } h(0)=0$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=3$ | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &5\\ f(5)= &11\\ f(6)= &28\\ f(7)= &72\\ f(8)= &192\\ \end{array}$ ====Subclasses==== [[Tarski algebras]] [[MV-algebras]] ====Superclasses==== [[BCK-algebras]] ====References==== [(Ln19xx> )]