=====Boolean semilattices===== Abbreviation: **BSlat** ====Definition==== A \emph{Boolean semilattice} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\cdot\rangle$ such that $\mathbf{A}$ is in the variety generated by complex algebras of semilattices Let $\mathbf{S}=\langle S,\cdot\rangle$ be a [[semilattice]]. The \emph{complex algebra} of $\mathbf{S}$ is $Cm(\mathbf{S})=\langle P(S),\cup,\emptyset,\cap,S,-,\cdot\rangle$, where $\langle P(S),\cup,\emptyset, \cap,S,-\rangle$ is the Boolean algebra of subsets of $S$, and $X\cdot Y=\{x\cdot y\mid x\in X,\ y\in Y\}$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves $\cdot$: $h(x\cdot y)=h(x)\cdot h(y)$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Finitely axiomatizable]] |open | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] | | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &5\\ f(5)= &0\\ f(6)= &0\\ f(7)= &0\\ f(8)= &\ge 97\text{ out of }104\\ \end{array}$ [[Some members of BSlat]] ====Subclasses==== [[Variety generated by complex algebras of linear semilattices]] ====Superclasses==== [[Commutative Boolean semigroups]] ====References==== [(Ln19xx> )]\end{document} %