=====Boolean monoids===== Abbreviation: **BMon** ====Definition==== A \emph{Boolean monoid} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\cdot,e\rangle$ such that $\langle A,\vee,0, \wedge,1,\neg\rangle $ is a [[Boolean algebra]] $\langle A,\cdot,e\rangle $ is a [[monoids]] $\cdot$ is \emph{join-preserving} in each argument: $(x\vee y)\cdot z=(x\cdot z)\vee (y\cdot z) \mbox{ and } x\cdot (y\vee z)=(x\cdot y)\vee (x\cdot z)$ $\cdot$ is \emph{normal} in each argument: $0\cdot x=0 \mbox{ and } x\cdot 0=0$ Remark: ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves $\cdot$, $e$: $h(x\cdot y)=h(x)\cdot h(y) \mbox{ and } h(e)=e$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &9\\ f(5)= &0\\ f(6)= &0\\ f(7)= &0\\ f(8)= &258\\ \end{array}$ ====Subclasses==== [[Sequential algebras]] ====Superclasses==== [[Boolean algebras with operators]] ====References==== [(Ln19xx> )]