=====Boolean algebras===== Abbreviation: **BA** nbsp nbsp nbsp nbsp nbsp Search: [[http://www.google.com/search?q=boolean+algebras|Boolean algebras]] [[http://www.google.com/search?q=boolean+rings|Boolean rings]] ====Definition==== A \emph{Boolean algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,-\rangle $ of type $\langle 2,0,2,0,1\rangle $ such that $0,1$ are identities for $\vee,\wedge$: $x\vee 0=x$, $x\wedge 1=x$ $-$ gives a complement: $x\wedge -x=0$, $x\vee -x=1$ $\vee,\wedge$ are associative: $x\vee (y\vee z)=(x\vee y)\vee z$, $x\wedge (y\wedge z)=(x\wedge y)\wedge z$ $\vee,\wedge$ are commutative: $x\vee y=y\vee x$, $x\wedge y=y\wedge x$ $\vee,\wedge$ are mutually distributive: $x\wedge (y\vee z)=(x\wedge y)\vee (x\wedge z)$, $x\vee (y\wedge z)=(x\vee y)\wedge (x\vee z)$ ====Definition==== A \emph{Boolean algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,-\rangle $ of type $\langle 2,0,2,0,1\rangle $ such that $\langle A,\vee ,0,\wedge ,1\rangle $ is a [[bounded distributive lattice]] $-$ gives a complement: $x\wedge -x=0$, $x\vee -x=1$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(-x)=-h(x)$ It follows that $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$. ====Definition==== A \emph{Boolean ring} is a structure $\mathbf{A}=\langle A,+ ,0,\cdot ,1\rangle $ of type $\langle 2,0,2,0\rangle $ such that $\langle A,+ ,0,\cdot ,1\rangle $ is a [[commutative ring with unit]] $\cdot$ is idempotent: $x\cdot x=x$ Remark: The term-equivalence with Boolean algebras is given by $x\wedge y=x\cdot y$, $-x=x+1$, $x\vee y=-(-x\wedge -y)$ and $x+y=(x\vee y)\wedge -(x\wedge y)$. ====Definition==== A \emph{Boolean algebra} is a [[Heyting algebra]] $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,\to\rangle $ such that $\to 0$ is an involution: $(x\to 0)\to 0=x$ ====Examples==== Example 1: $\langle \mathcal P(S), \cup ,\emptyset, \cap, S, -\rangle$, the collection of subsets of a sets $S$, with union, intersection, and setcomplementation. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable in NPTIME | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |decidable | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |yes | ^[[Equationally def. pr. cong.]] |yes | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes | ^[[Epimorphisms are surjective]] |yes | ^[[Locally finite]] |yes | ^[[Residual size]] |2 | ====Finite members==== Number of algebras $=\{ \begin{array}{cc} 1 & \text{if size}=2^{n} \\ 0 & \text{otherwise}\end{array}. $ ====Subclasses==== [[One-element algebras]] [[Complete Boolean algebras]] ====Superclasses==== [[Bounded distributive lattices]] [[Generalized Boolean algebras]] [[Heyting algebras]] ====References====