=====BCK-lattices===== Abbreviation: **BCKlat** ====Definition==== A \emph{BCK-lattice} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\rightarrow,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that $\langle A,\vee,\rightarrow,1\rangle$ is a [[BCK-join-semilattice]] $\langle A,\wedge,\rightarrow,1\rangle$ is a [[BCK-meet-semilattice]] Remark: $x\le y \iff x\rightarrow y=1$ is a partial order, with $1$ as greatest element, and $\vee$, $\wedge$ are a join and meet for this order. [(Idziak1984)] ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ and $h(1)=1$. ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes $n=2$ | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ ====Subclasses==== [[Heyting algebras]] ====Superclasses==== [[BCK-join-semilattices]] [[BCK-meet-semilattices]] ====References==== [(Idziak1984> Pawel M. Idziak, \emph{Lattice operation in BCK-algebras}, Math. Japon., \textbf{29}, 1984, 839--846 [[MRreview]] )]