=====BCK-algebras===== Abbreviation: **BCK** ====Definition==== A \emph{BCK-algebra} is a structure $\mathbf{A}=\langle A,\cdot ,0\rangle$ of type $\langle 2,0\rangle$ such that (1): $((x\cdot y)\cdot (x\cdot z))\cdot (z\cdot y) = 0$ (2): $x\cdot 0 = x$ (3): $0\cdot x = 0$ (4): $x\cdot y=y\cdot x= 0 \Longrightarrow x=y$ Remark: $x\le y \iff x\cdot y=0$ is a partial order, with $0$ as least element. BCK-algebras provide [[algebraic semantics]] for BCK-logic, named after the combinators B, C, and K by C. A. Meredith, see [(Prior1962)]. ====Definition==== A \emph{BCK-algebra} is a [[BCI-algebra]] $\mathbf{A}=\langle A,\cdot ,0\rangle$ such that $x\cdot 0 = x$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y)$ and $h(0)=0$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |quasivariety [(Wronski1983)] | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |no | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes [(Wronski1984)] | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &14\\ f(5)= &88\\ f(6)= &775\\ \end{array}$ ====Subclasses==== [[Commutative BCK-algebras]] ====Superclasses==== [[BCI-algebras]] ====References==== [(Prior1962> A. N. Prior, \emph{Formal logic}, Second edition, Clarendon Press, Oxford, 1962, p.316)] [(Wronski1983> Andrzej Wronski,\emph{BCK-algebras do not form a variety}, Math. Japon., \textbf{28}, 1983, 211--213)] [(Wronski1984> Andrzej Wronski,\emph{Interpolation and amalgamation properties of BCK-algebras}, Math. Japon., \textbf{29}, 1984, 115--121)]