=====BCI-algebras===== Abbreviation: **BCI** ====Definition==== A \emph{BCI-algebra} is a structure $\mathbf{A}=\langle A,\cdot ,0\rangle$ of type $\langle 2,0\rangle$ such that (1): $((x\cdot y)\cdot (x\cdot z))\cdot (z\cdot y) = 0$ (2): $(x\cdot (x\cdot y))\cdot y = 0$ (3): $x\cdot x = 0$ (4): $x\cdot y=y\cdot x= 0 \Longrightarrow x=y$ (5): $x\cdot 0 = 0 \Longrightarrow x=0$ Remark: ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be BCI-algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\cdot y)=h(x)\cdot h(y) \mbox{ and } h(0)=0$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |Quasivariety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |No | ^[[Residual size]] | | ^[[Congruence distributive]] |No | ^[[Congruence modular]] |No | ^[[Congruence n-permutable]] |No | ^[[Congruence regular]] |No | ^[[Congruence uniform]] |No | ^[[Congruence extension property]] |No | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ ====Subclasses==== [[BCK-algebras]] ====Superclasses==== [[Groupoids]] ====References==== [(Ln19xx> )]