=====Almost distributive lattices===== Abbreviation: **ADLat** ====Definition==== An \emph{almost distributive lattice} is a [[neardistributive lattice]] $\mathbf{L}=\langle L,\vee,\wedge\rangle$ such that AD$_{\wedge}$: $v\wedge[u\vee (x\wedge[y\vee (x\wedge z)])]\le u\vee [(x\wedge[y\vee (x\wedge z)])\wedge(v\vee (x\wedge y)\vee (x\wedge z))]$ AD$_{\vee}$: $v\vee[u\wedge (x\vee[y\wedge (x\vee z)])]\ge u\wedge [(x\vee[y\wedge (x\vee z)])\vee(v\wedge (x\vee y)\wedge (x\vee z))]$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be almost distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Examples==== Example 1: $D[d]=\langle D\cup\{d'\},\vee ,\wedge\rangle$, where $D$ is any distributive lattice and $d$ is an element in it that is split into two elements $d,d'$ using Alan Day's doubling construction. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &4\\ f(6)= &\\ f(7)= &\\ \end{array}$ ====Subclasses==== [[Distributive lattices]] ====Superclasses==== [[Neardistributive lattices]] ====References==== [(Ln19xx> )]