Loading [MathJax]/jax/output/CommonHTML/jax.js

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

abelian_groups [2021/02/22 20:59]
jipsen
abelian_groups [2021/02/22 21:11]
Line 1: Line 1:
-=====Abelian groups===== 
- 
-Abbreviation: **AbGrp** [[wp>Abelian group]] 
- 
-====Definition==== 
-An \emph{abelian group} is a structure $\mathbf{G}=\langle 
-G,+,-,0\rangle,where+$ is an infix binary operation, called the  
-\emph{group addition}, is a prefix unary operation, called the  
-\emph{group negative} and 0 is a constant (nullary operation), called the \emph{additive identity element}, such that 
- 
-+ is commutative:  x+y=y+x 
- 
-+ is associative:  (x+y)+z=x+(y+z) 
- 
-0 is an additive identity for +0+x=x 
- 
- gives an additive inverse for +x+x=0 
- 
-==Morphisms== 
-Let G and H be abelian groups. A morphism from G to H is a function h:GH that is a 
-homomorphism:  
-h(x+y)=h(x)+h(y) 
- 
-Remark: It follows that h(x)=h(x) and h(0)=0. 
- 
- 
-====Examples==== 
-Example 1: Z,+,,0, the integers, with addition, unary subtraction, and zero. The variety of abelian groups is generated by this algebra. 
- 
-Example 2: Zn=Z/nZ,+n,n,0+nZ, integers mod n. 
- 
-Example 3: Any one-generated subgroup of a group. 
- 
- 
-===Basic results=== 
-The free abelian group on n generators is Zn. 
- 
-Classification of finitely generated abelian groups: Every n-generated abelian group is isomorphic to a direct product of Zpkii for i=1,,m and nm copies of Z, where the pi are (not necessarily distinct) primes and m0. 
- 
- 
-====Properties==== 
-^[[Classtype]]                       |variety | 
-^[[Equational theory]]               |decidable in polynomial time | 
-^[[Quasiequational theory]]          |decidable | 
-^[[First-order theory]]              |decidable [(Szmielew1949)] | 
-^[[Locally finite]]                  |no | 
-^[[Residual size]]                   |ω | 
-^[[Congruence distributive]]         |no (Z2×Z2) | 
-^[[Congruence n-permutable]]         |yes, n=2, p(x,y,z)=xy+z | 
-^[[Congruence regular]]              |yes, congruences are determined by subalgebras | 
-^[[Congruence uniform]]              |yes | 
-^[[Congruence types]]                |permutational | 
-^[[Congruence extension property]]   |yes, if KHG then KG | 
-^[[Definable principal congruences]] |no | 
-^[[Equationally def. pr. cong.]]     |no | 
-^[[Amalgamation property]]           |yes | 
-^[[Strong amalgamation property]]    |yes | 
- 
- 
-====Finite members==== 
-^n       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 
-^# of algs | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 2 |  1 |  1 |  2 |  1 |  1 |  1 |  5 |  1 |  2 |  1 | 1  |  1 |  1 |  1 |  3 |  2 | 
-^# of si's | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |  0 |  1 |  0 |  1 |  0 |  0 |  1 |  1 |  0 |  1 | 0  |  0 |  0 |  1 |  0 |  1 | 
- 
-see also http://www.research.att.com/projects/OEIS?Anum=A000688 
- 
- 
-====Subclasses==== 
-[[Boolean groups]] 
- 
-[[Commutative rings]] 
- 
- 
-====Superclasses==== 
-[[Groups]] 
- 
-[[Commutative monoids]] 
- 
- 
-====References==== 
- 
-[(Szmielew1949> 
-W. Szmielew, \emph{Decision problem in group theory}, 
-Library of the Tenth International Congress of Philosophy,  
-Amsterdam, August 11--18, 1948, Vol.1, Proceedings of the Congress, 
-1949, 763--766 [[http://www.ams.org/mathscinet-getitem?mr=10:500a|MRreview]])] 
  

QR Code
QR Code abelian_groups (generated for current page)