## Quasitrivial groupoids

Abbreviation: QtGrpd

### Definition

A quasitrivial groupoid is a groupoid $\mathbf{A}=\langle A,\cdot\rangle$ such that

$\cdot$ is quasitrivial: $x\cdot y=x\text{ or }x\cdot y=y$

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be quasitrivial groupoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$

### Definition

An is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is …: $axiom$

$...$ is …: $axiom$

Example 1:

### Basic results

Quasitrivial groupoids are in 1-1 correspondence with reflexive relations. E.g. a translations is given by $x\cdot y=x$ iff $\langle x,y\rangle\in E$.

### Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

Classtype universal

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

### Subclasses

[[...]] subvariety
[[...]] expansion

### Superclasses

[[...]] supervariety
[[...]] subreduct