Regular semigroups

Abbreviation: RSgrp

Definition

An element $x$ of a semigroup $S$ is said to be regular if exists $y$ in $S$ such that $xyx=x$.

Definition

A regular semigroup is a semigroups $\mathbf{S}=\langle S,\cdot \rangle $ such that each element is regular.

Definition

A regular semigroup is a structure $\mathbf{S}=\langle S,\cdot \rangle $, where $\cdot $ is an infix binary operation, called the semigroup product, such that

$\cdot $ is associative: $(xy)z=x(yz)$

each element is regular: $\exists y(xyx=x)$

Definition

We say that $y$ is an inverse of an element $x$ in a semigroup $S$ if $x=xyx$ and $y=yxy$.

Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be regular semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:Sarrow T$ that is a homomorphism:

$h(xy)=h(x)h(y)$

Examples

Example 1: $\langle T_X,\circ\rangle $, the full transformation semigroup of functions on $X$, with composition.

$\langle End(V),\circ\rangle $, the endomorphism monoid of a vector space $V$, with composition.

Basic results

If $x$ is a regular element of a semigroup (say $x=xyx$), then $x$ has an inverse, namely $yxy$, since $x=x(yxy)x$ and $yxy=(yxy)x(yxy)$.

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &3\\ f(3)= &9\\ f(4)= &42\\ f(5)= &206\\ f(6)= &1352\\ f(7)= &10168\\ f(8)= &91073\\ f(9)= &925044 \end{array}$

(the opposite of a semigroup $S$ is identified with $S$ in the table above, see https://oeis.org/A001427)

Subclasses

Superclasses

Semigroups

\begin{bibdiv} \begin{biblist}

\bib{MR1455373}{book}{

 author={Howie, John M.},
 title={Fundamentals of semigroup theory},
 series={London Mathematical Society Monographs. New Series},
 volume={12},
 note={Oxford Science Publications},
 publisher={The Clarendon Press Oxford University Press},
 place={New York},
 date={1995},
 pages={x+351},
 isbn={0-19-851194-9},
 review={\MR{1455373 (98e:20059)}},

}

\end{biblist} \end{bibdiv}