This is an old revision of the document!


Reflexive relations

Abbreviation: RefRel

Definition

A reflexive relation is a structure $\mathbf{X}=\langle X,R\rangle$ such that $R$ is a binary relation on $X$ (i.e. $R\subseteq X\times X$) that is

reflexive: $xRx$

Remark: This is a template. If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{X}$ and $\mathbf{Y}$ be reflexive relations. A morphism from $\mathbf{X}$ to $\mathbf{Y}$ is a function $h:A\rightarrow B$ that is a homomorphism: $xR^{\mathbf X} y\Longrightarrow h(x)R^{\mathbf Y}h(y)$

Definition

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

Subclasses

Superclasses

[[Directed graphs]] supervariety

References