## Partially ordered semigroups

Abbreviation: **PoSgrp**

### Definition

A ** partially ordered semigroup** is a structure $\mathbf{A}=\langle A,\cdot,\le\rangle$ such that

$\langle A,\cdot\rangle$ is a semigroup

$\langle G,\le\rangle$ is a partially ordered set

$\cdot$ is ** orderpreserving**: $x\le y\Longrightarrow xz\le yz \text{ and } zx\le zy$

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be partially ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is an orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$, $x\le y\Longrightarrow h(x)\le h(y)$

### Examples

Example 1: The natural numbers larger than 1, with addition, or with multiplication.

### Basic results

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &11\\ f(3)= &173\\ f(4)= &\\ f(5)= &\\ \end{array}$

### Subclasses

### Superclasses

### References

Trace: » partially_ordered_semigroups