## Partially ordered monoids

Abbreviation: **PoMon**

### Definition

A ** partially ordered monoid** is a structure $\mathbf{A}=\langle A,\cdot,1,\le\rangle$ such that

$\langle A,\cdot,1\rangle$ is a monoid

$\langle G,\le\rangle$ is a partially ordered set

$\cdot$ is ** orderpreserving**: $x\le y\Longrightarrow wxz\le wyz$

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be partially ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is an orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$, $h(1)=1$, $x\le y\Longrightarrow h(x)\le h(y)$

### Examples

Example 1:

### Basic results

Every monoid with the discrete partial order is a po-monoid.

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &4\\ f(3)= &37\\ f(4)= &549\\ f(5)= &\\ \end{array}$

### Subclasses

Commutative partially ordered monoids

Lattice-ordered monoids expanded type

### Superclasses

Partially ordered semigroups reduced type

### References

Trace: » partially_ordered_monoids