Ordered semigroups

Abbreviation: OSgrp

Definition

An ordered semigroup is a partially ordered semigroup $\mathbf{A}=\langle A,\cdot,\le\rangle$ such that

$\le$ is linear: $x\le y\text{ or }y\le x$

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$, $x\le y\Longrightarrow h(x)\le h(y)$.

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{rr} f(1)=&1\\ f(2)=&6\\ f(3)=&44\\ f(4)=&386\\ f(5)=&3852\\ f(6)=&42640\\ f(7)=&516791\\ f(8)=&6817378\\ \end{array}$

http://oeis.org/A084965

Subclasses

Superclasses

References