Nonassociative relation algebras

Abbreviation: NA

Definition

A nonassociative relation algebra is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\circ,^{\smile},e\rangle$ such that

$\langle A,\vee,0, \wedge,1,\neg\rangle$ is a Boolean algebra

$e$ is an identity for $\circ$: $x\circ e=x$, $e\circ x=x$

$\circ$ is join-preserving: $(x\vee y)\circ z=(x\circ z)\vee (y\circ z)$

$^{\smile}$ is an involution: ${x^\smile}^\smile=x$, $(x\circ y)^{\smile} z=y^{\smile}\circ x^{\smile}$

$^{\smile}$ is join-preserving: $(x\vee y)^{\smile} z=x^{\smile}\vee y^{\smile}$

$\circ$ is residuated: $x^{\smile}\circ(\neg (x\circ y))\le\neg y$

Remark:

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be relation algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a Boolean homomorphism and preserves $\circ$, $^{\smile}$, $e$:

$h(x\circ y)=h(x)\circ h(y)$, $h(x^{\smile})=h(x)^{\smile}$, $h(e)=e$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$

Subclasses

Superclasses

References