Differences
This shows you the differences between two versions of the page.
lattices [2010/08/01 16:34] jipsen |
lattices [2016/01/27 11:48] (current) jipsen |
||
---|---|---|---|
Line 47: | Line 47: | ||
[[partially ordered set]] in which all elements $x,y\in L$ have a | [[partially ordered set]] in which all elements $x,y\in L$ have a | ||
- | least upper bound: $z=x\vee y\Longleftrightarrow x\leq z$, $y\leq z\ \mbox{and}\ \forall w\ (x\leq w$, $y\leq w\Longrightarrow z\leq w)$ | + | least upper bound: $z=x\vee y\Longleftrightarrow x\leq z$, $y\leq z\ \mbox{and}\ \forall w\ (x\leq w$, $y\leq w\Longrightarrow z\leq w)$ and a |
greatest lower bound: $z=x\wedge y\Longleftrightarrow z\leq x$, $z\leq y\ \mbox{and}\ \forall w\ (w\leq x$, $w\leq y\Longrightarrow w\leq z)$ | greatest lower bound: $z=x\wedge y\Longleftrightarrow z\leq x$, $z\leq y\ \mbox{and}\ \forall w\ (w\leq x$, $w\leq y\Longrightarrow w\leq z)$ | ||
Line 55: | Line 55: | ||
A \emph{lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge | A \emph{lattice} is a structure $\mathbf{L}=\langle L,\vee ,\wedge | ||
,\leq \rangle $ such that $\langle L,\leq \rangle $ is a | ,\leq \rangle $ such that $\langle L,\leq \rangle $ is a | ||
- | [[Partially ordered sets]] and the following quasiequations hold: | + | [[partially ordered set]] and the following quasiequations hold: |
- | $\vee $-left: $x\leq z$, $y\leq z\ \Longrightarrow x\vee y\leq z$ | + | $\vee $-left: $x\leq z$ and $y\leq z\ \Longrightarrow x\vee y\leq z$ |
$\vee $-right: $z\leq x\Longrightarrow z\leq x\vee y$, $\quad z\leq y\Longrightarrow z\leq x\vee y$ | $\vee $-right: $z\leq x\Longrightarrow z\leq x\vee y$, $\quad z\leq y\Longrightarrow z\leq x\vee y$ | ||
- | $\wedge $-right: $z\leq x$, $z\leq y\Longrightarrow z\leq x\wedge y$ | + | $\wedge $-right: $z\leq x$ and $z\leq y\Longrightarrow z\leq x\wedge y$ |
$\wedge $-left: $x\leq z\Longrightarrow x\wedge y\leq z$, $\quad y\leq z\Longrightarrow x\wedge y\leq z$ | $\wedge $-left: $x\leq z\Longrightarrow x\wedge y\leq z$, $\quad y\leq z\Longrightarrow x\wedge y\leq z$ | ||
Line 122: | Line 122: | ||
f(17)= &15150569446\\ | f(17)= &15150569446\\ | ||
f(18)= &165269824761\\ | f(18)= &165269824761\\ | ||
- | \end{array}$ | + | f(19)= &1901910625578 |
- | + | \end{array}$[(Jobst Heitzig, J\"urgen Reinhold, \emph{Counting finite lattices}, | |
- | [(Jobst Heitzig, J\"urgen Reinhold, \emph{Counting finite lattices}, | + | |
Algebra Universalis, | Algebra Universalis, | ||
- | \textbf{48}, 2002, 43--53)] | + | \textbf{48}, 2002, 43--53)][(Peter Jipsen, Nathan Lawless, \emph{Generating all finite modular lattices of a given size}, |
+ | Algebra Universalis, \textbf{74}, 2015, 253--264)] | ||
- | /*[[Lattices of size 1 to 6]] | ||
- | [[Finite lattices]] of size $\le 7$ | + | [[http://math.chapman.edu/~jipsen/posets/lattices77.html|Diagrams of lattices of size 2 to 7]] |
+ | |||
+ | /*[[Finite lattices]] of size $\le 7$ | ||
[[Subdirectly irreducible lattices]] of size $\le 7$ | [[Subdirectly irreducible lattices]] of size $\le 7$ | ||
Line 155: | Line 156: | ||
====References==== | ====References==== | ||
- | |||
Trace: