Differences

This shows you the differences between two versions of the page.

lattice-ordered_monoids [2010/07/29 15:46] (current)
Line 1: Line 1:
 +=====Lattice-ordered monoids=====
 +
 +Abbreviation: **LMon**
 +
 +====Definition====
 +A \emph{lattice-ordered monoid} (or \emph{$\ell$-monoid}) is a structure $\mathbf{A}=\langle A\vee,\wedge,\cdot,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that
 +
 +$\langle A,\vee,\wedge\rangle$ is a [[lattice]]
 +
 +$\langle A,\cdot,1\rangle$ is a [[monoid]]
 +
 +$\cdot$ distributes over $\vee$:  $x(y\vee z)=xy\vee xz$, $(x\vee y)z=xz\vee yz$
 +
 +Remark: This is a template.
 +If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.
 +
 +It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
 +
 +==Morphisms==
 +Let $\mathbf{A}$ and $\mathbf{B}$ be lattice ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
 +$h(x \vee y)=h(x) \vee h(y)$,
 +$h(x \wedge y)=h(x) \wedge h(y)$,
 +$h(x \cdot y)=h(x) \cdot h(y)$,
 +$h(1)=1$.
 +
 +====Examples====
 +Example 1:
 +
 +====Basic results====
 +
 +
 +====Properties====
 +Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
 +
 +^[[Classtype]]                        |variety  |
 +^[[Equational theory]]                | |
 +^[[Quasiequational theory]]           | |
 +^[[First-order theory]]               | |
 +^[[Locally finite]]                   | |
 +^[[Residual size]]                    | |
 +^[[Congruence distributive]]          |yes |
 +^[[Congruence modular]]               |yes |
 +^[[Congruence $n$-permutable]]        | |
 +^[[Congruence regular]]               | |
 +^[[Congruence uniform]]               | |
 +^[[Congruence extension property]]    | |
 +^[[Definable principal congruences]]  | |
 +^[[Equationally def. pr. cong.]]      | |
 +^[[Amalgamation property]]            | |
 +^[[Strong amalgamation property]]     | |
 +^[[Epimorphisms are surjective]]      | |
 +
 +====Finite members====
 +
 +$\begin{array}{lr}
 +  f(1)= &1\\
 +  f(2)= &2\\
 +  f(3)= &8\\
 +  f(4)= &\\
 +  f(5)= &\\
 +\end{array}$    
 +$\begin{array}{lr}
 +  f(6)= &\\
 +  f(7)= &\\
 +  f(8)= &\\
 +  f(9)= &\\
 +  f(10)= &\\
 +\end{array}$
 +
 +
 +====Subclasses====
 +  [[Residuated lattices]] expanded type
 +
 +
 +====Superclasses====
 +  [[Lattice ordered semigroups]] reduced type
 +
 +
 +====References====
 +
 +[(Lastname19xx>
 +F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 [[MRreview]]
 +)]
 +
 +