# Differences

This shows you the differences between two versions of the page.

hilbert_algebras [2012/07/17 09:34]
jipsen
hilbert_algebras [2016/09/02 09:28] (current)
jipsen
Line 8: Line 8:
$x\to(y\to x)=1$ $x\to(y\to x)=1$
-$(x\to(y\to z))\to((x\to y)\to(x\to y))=1$+$(x\to(y\to z))\to((x\to y)\to(x\to z))=1$
$x\to y=1\mbox{ and }y\to x=1 \Longrightarrow x=y$ $x\to y=1\mbox{ and }y\to x=1 \Longrightarrow x=y$
Line 28: Line 28:
====Examples==== ====Examples====
-Example 1: +Example 1: Given any poset with top element 1, $\langle A,\le, 1\rangle$, define $a\to b=\begin{cases}1&\text{ if$a\le b$}\\ b&\text{ otherwise.}\end{cases}$ Then $\langle A,\to,1\rangle$ is a Hilbert algebra.
====Basic results==== ====Basic results====
Line 34: Line 34:
Hilbert algebras are the algebraic models of the implicational fragment of [[wp>intuitionistic logic]], i.e., they are $(\to,1)$-subreducts of [[Heyting algebras]]. Hilbert algebras are the algebraic models of the implicational fragment of [[wp>intuitionistic logic]], i.e., they are $(\to,1)$-subreducts of [[Heyting algebras]].
-The variety of Hilbert algebras is not generated by any of its finite members [(CelaniCabrer2005)].+The variety of Hilbert algebras is not generated as a quasivariety by any of its finite members [(CelaniCabrer2005)].
====Properties==== ====Properties====
Line 75: Line 75:
====Subclasses==== ====Subclasses====
-  [[...]] subvariety+[[...]] subvariety
-  [[...]] expansion+[[...]] expansion
====Superclasses==== ====Superclasses====
-  [[...]] supervariety+[[...]] supervariety
-  [[...]] subreduct+[[...]] subreduct
Line 89: Line 89:
[(Diego1966> [(Diego1966>
-A. Diego, \emph{Sur les alg�bres de Hilbert}, Collection de Logique Math\'ematique, S\'er. A, 1966, 1--55 [[MRreview]] +A. Diego, \emph{Sur les algébres de Hilbert}, Collection de Logique Math\'ematique, S\'er. A, 1966, 1--55
+)]
+
+[(CelaniCabrer2005>
+S. Celani and L. Cabrer: Duality for finite Hilbert algebras. Discrete Math. 305 (2005), no. 1-3, 74-–99.
)] )]

##### Toolbox 