This is an old revision of the document!


Hilbert algebras

Abbreviation: HilA

Definition

A Hilbert algebra is a structure $\mathbf{A}=\langle A,\to,1\rangle$ of type $\langle 2, 1\rangle$ such that

$x\to(y\to x)=1$

$(x\to(y\to z))\to((x\to y)\to(x\to y))=1$

$x\to y=1\mbox{ and }y\to x=1 \Longrightarrow x=y$

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Hilbert algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\to y)=h(x)\to h(y)$ and $h(1)=1$.

Definition

An is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is …: $axiom$

$...$ is …: $axiom$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

Subclasses

[[...]] subvariety
[[...]] expansion

Superclasses

[[...]] supervariety
[[...]] subreduct

References


1) A. Diego, Sur les algbres de Hilbert, Collection de Logique Math\'ematique, S\'er. A, 1966, 1–55 MRreview