**This is an old revision of the document!**

Table of Contents

## Groupoids

Abbreviation: **BinOp**

### Definition

A ** groupoid** is a structure $\mathbf{A}=\langle A,\cdot\rangle$ where
$\cdot$ is any binary operation on $A$.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be groupoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\cdot y)=h(x)\cdot h(y)$

### Examples

Example 1:

### Basic results

### Properties

Classtype | variety |
---|---|

Equational theory | decidable |

Quasiequational theory | |

First-order theory | undecidable |

Locally finite | no |

Residual size | unbounded |

Congruence distributive | no |

Congruence modular | no |

Congruence n-permutable | no |

Congruence regular | no |

Congruence uniform | no |

Congruence extension property | no |

Definable principal congruences | no |

Equationally def. pr. cong. | no |

Amalgamation property | yes |

Strong amalgamation property | yes |

Epimorphisms are surjective | yes |

### Finite members

n | # of algebras |
---|---|

1 | 1 |

2 | 10 |

3 | 3330 |

4 | 178981952 |

5 | 2483527537094825 |

6 | 14325590003318891522275680 |

7 | 50976900301814584087291487087214170039 |

8 | 155682086691137947272042502251643461917498835481022016 |

Michael A. Harrison, ** The number of isomorphism types of finite algebras**,
Proc. Amer. Math. Soc.,

**17**1966, 731–737 MRreview

### Subclasses

### Superclasses

### References

Trace: » groupoids