FLe-algebras

Abbreviation: FL$_e$

Definition

A full Lambek algebra with exchange, or FLe-algebra, is a FL-algebras $\langle A, \vee, 0, \wedge, T, \cdot, 1, \backslash, /\rangle$ such that

$\cdot$ is commutative: $x\cdot y=y\cdot x$

Remark:

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be FLe-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(\bot )=\bot$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(\top )=\top$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(1)=1$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &16\\ f(5)= &100\\ f(6)= &794\\ \end{array}$

Subclasses

Superclasses

References