## Fields

Abbreviation: **Fld**

### Definition

A ** field** is a commutative rings with identity $\mathbf{F}=\langle F,+,-,0,\cdot,1
\rangle$ such that

$\mathbf{F}$ is non-trivial: $0\ne 1$

every non-zero element has a multiplicative inverse: $x\ne 0\Longrightarrow \exists y (x\cdot y=1)$

Remark: The inverse of $x$ is unique, and is usually denoted by $x^{-1}$.

##### Morphisms

Let $\mathbf{F}$ and $\mathbf{G}$ be fields. A morphism from $\mathbf{F}$ to $\mathbf{G}$ is a function $h:F\rightarrow G$ that is a homomorphism:

$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$

Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$.

### Examples

Example 1: $\langle\mathbb{Q},+,-,0,\cdot,1\rangle$, the field of rational numbers with addition, subtraction, zero, multiplication, and one.

### Basic results

$0$ is a zero for $\cdot$: $0\cdot x=x$ and $x\cdot 0=0$.

### Properties

### Finite members

$\begin{array}{lr} f(1)= &0\\ f(2)= &1\\ f(3)= &1\\ f(4)= &1\\ f(5)= &1\\ f(6)= &0\\ \end{array}$

There exists one field, called the Galois field $GF(p^m)$ of each prime-power order $p^m$.

### Subclasses

### Superclasses

### References

Trace: » fields