Differences

This shows you the differences between two versions of the page.

distributive_lattice_ordered_semigroups [2010/07/29 15:46] (current)
Line 1: Line 1:
 +=====Distributive lattice-ordered semigroups=====
 +
 +Abbreviation: **DLOS**
 +
 +====Definition====
 +A \emph{distributive lattice ordered semigroup} is a structure $\mathbf{A}=\langle A,\vee,\wedge,\cdot\rangle$ of type $\langle 2,2,2\rangle$ such that
 +
 +$\langle A,\vee,\wedge\rangle$ is a [[distributive lattice]]
 +
 +$\langle A,\cdot\rangle$ is a [[semigroup]]
 +
 +$\cdot$ distributes over $\vee$:  $x\cdot(y\vee z)=(x\cdot y)\vee (x\cdot z)$ and $(x\vee y)\cdot z=(x\cdot z)\vee (y\cdot z)$
 +
 +Remark: This is a template.
 +If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.
 +
 +It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
 +
 +==Morphisms==
 +Let $\mathbf{A}$ and $\mathbf{B}$ be distributive lattice-ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
 +$h(x\vee y)=h(x) \vee h(y)$,
 +$h(x\wedge y)=h(x) \wedge h(y)$,
 +$h(x\cdot y)=h(x) \cdot h(y)$
 +
 +====Definition====
 +An \emph{...} is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle
 +...\rangle$ such that
 +
 +$...$ is ...:  $axiom$
 +  
 +$...$ is ...:  $axiom$
 +
 +====Examples====
 +Example 1:
 +
 +====Basic results====
 +
 +
 +====Properties====
 +Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
 +
 +^[[Classtype]]                        |variety  |
 +^[[Equational theory]]                | |
 +^[[Quasiequational theory]]           | |
 +^[[First-order theory]]               | |
 +^[[Locally finite]]                   | |
 +^[[Residual size]]                    | |
 +^[[Congruence distributive]]          |yes |
 +^[[Congruence modular]]               |yes |
 +^[[Congruence $n$-permutable]]        | |
 +^[[Congruence regular]]               | |
 +^[[Congruence uniform]]               | |
 +^[[Congruence extension property]]    | |
 +^[[Definable principal congruences]]  | |
 +^[[Equationally def. pr. cong.]]      | |
 +^[[Amalgamation property]]            | |
 +^[[Strong amalgamation property]]     | |
 +^[[Epimorphisms are surjective]]      | |
 +
 +====Finite members====
 +
 +$\begin{array}{lr}
 +  f(1)= &1\\
 +  f(2)= &\\
 +  f(3)= &\\
 +  f(4)= &\\
 +  f(5)= &\\
 +\end{array}$    
 +$\begin{array}{lr}
 +  f(6)= &\\
 +  f(7)= &\\
 +  f(8)= &\\
 +  f(9)= &\\
 +  f(10)= &\\
 +\end{array}$
 +
 +
 +====Subclasses====
 +  [[...]] subvariety
 +
 +  [[...]] expansion
 +
 +
 +====Superclasses====
 +  [[...]] supervariety
 +
 +  [[...]] subreduct
 +
 +
 +====References====
 +
 +[(Andreka1991>
 +Hajnal Andr\'eka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25
 +[[MRreview]]
 +)]
 +
 +