This is an old revision of the document!
De Morgan algebras
Abbreviation: DeMA
Definition
A De Morgan algebra is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,\neg\rangle $ such that
$\langle A,\vee ,0,\wedge ,1\rangle $ is a bounded distributive lattice
$\neg$ is a De Morgan involution: $\neg( x\wedge y) =\neg x\vee \neg y$, $\neg\neg x=x$
Remark: It follows that $\neg ( x\vee y) =\neg x\wedge \neg y$, $\ \neg 1=0$ and $\neg 0=1$ (e.g. $\neg 1=\neg 1\vee 0=\neg 1\vee\neg\neg 0= \neg(1\wedge\neg 0)=\neg\neg 0=0$). Thus $\neg$ is a dual automorphism.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be De Morgan algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(\neg x)=\neg h(x)$
Examples
Example 1: Let $\{0<a,b<1\}$ be the 4-element lattice with $a,b$ incomparable, and define $'$ by $0'=1,a'=a,b'=b$.
Basic results
Properties
Finite members
$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$
Subclasses
Superclasses
References
Trace: » de_morgan_algebras